15.3 / PREDICATION. SPECULATION, AND SOFTWARE PIPELINING 551

(9) chk.s r4, recovery_a // fixup for
// loading a

(10) cmp.eqg p3, p4d =1, r4d

(11) (p4) br L2

(12) chk.s r6, recovery_b // fixup for
// loading b

(13) cmp.eq p5, p6é = 1, r5

(14) (p6) br L2

(15) L1: <code for then path>

(16) L2: <code for else path>

The assembly program breaks down into three basic blocks of code, each of
which is a load followed by a conditional branch. The address-setting instructions
4 and 7 in the Pentium assembly code are simple arithmetic calculations; these can be
done anytime, so the compiler moves these up to the top. Then the compiler is faced
with three simple blocks, each of which consists of a load, a condition calculation, and
a conditional branch. There seems little hope of doing anything in parallel here.
Furthermore, if we assume that the load takes two or more clock cycles, we have some
wasted time before the conditional branch can be executed. What the compiler can do
is hoist the second and third loads (instructions 5 and 8 in the Pentium code) above all
the branches. This is done by putting a speculative load up top (IA-64 instructions
5 and 6) and leaving a check in the original code block (IA-64 instructions 9 and 12).

This transformation makes it possible to execute all three loads in parallel and
to begin the loads early so as to minimize or avoid delays due to load latencies.
The compiler can go further by more aggressive use of predication, and eliminate
two of the three branches:

(1) mov rl = &b[j]
(2) mov r3 = &ali + J]
(3) mov r5 = &c[i - J + 7]
(4) 1d8 r2 = [rl]
Revised Code with (5) 1d8.s r4 = [r3]
Speculation and (6) 1d8.s r6 = [r5]
Predication: (7) cmp.eq pl, p2 = 1, r2
(8) (pl) chk.s r4, recovery_a
(9) (pl) cmp.eq p3, p4d =1, r4d
(10) (p3) «chk.s ré6, recovery_b
(11) (p3) cmp.eq p5, p4 = 1, r5
(12) (p6) Dbr L2
(13) L1: <code for then path>
(14) L2: <code for else path>

We already had a compare that generated two predicates. In the revised code, instead
of branching on the false predicate, the compiler qualifies execution of both the
check and the next compare on the true predicate. The elimination of two branches

552

CHAPTER 15 / THE 1A-64 ARCHITECTURE

means the elimination of two potential mispredictions, so that the savings is more
than just two instructions.

Data Speculation

In a control speculation, a load is moved earlier in a code sequence to compensate for

load latency, and a check is made to assure that an exception doesn’t occur if it subse-

quently turns out that the load was not taken. In data speculation, a load is moved

before a store instruction that might alter the memory location that is the source of the

load. A subsequent check is made to assure that the load receives the proper memory

value. To explain the mechanism, we use an example taken from [INTE0Oa, Volume 1].
Consider the following program fragment:

st8 [r4] = rl2 // Cycle O
1d8 r6 = [r8] ;; // Cycle 0
add 5 = r6, r7 ;; // Cycle 2
st8 [rl18] = r5 // Cycle 3

As written, the code requires four instruction cycles to execute. If registers
r4 and 18 do not contain the same memory address, then the store through r4 cannot
affect the value at the address contained in r8; under this circumstance, it is safe to
reorder the load and store to more quickly bring the value into r6, which is needed
subsequently. However, because the addresses in r4 and r8 may be the same or over-
lap, such a swap is not safe. IA-64 overcomes this problem with the use of a technique
known as advanced load.

1d8.a r6 = [r8] ;; // Cycle 22 or earlier;
// advanced load
// other instructions

st8 [r4] = ril2 // Cycle 0
1d8.c r6 = [r8] // Cycle 0; check load
add r5 = r6, r7 ;; // Cycle 0
st8 [rl8] = rb5 // Cycle 1

Here we have moved the Id instruction earlier and converted it into an
advanced load. In addition to performing the specified load, the 1d8.a instruction
writes its source address (address contained in r8) to a hardware data structure
known as the Advanced Load Address Table (ALAT). Each IA-64 store instruction
checks the ALAT for entries that overlap with its target address; if a match is found,
the ALAT entry is removed. When the original 1d8 is converted to an 1d8.a instruc-
tion and moved, the original position of that instruction is replaced with a check
load instruction, 1d8.c. When the check load is executed, it checks the ALAT for a
matching address. If one is found, no store instruction between the advanced load
and the check load has altered the source address of the load, and no action is taken.
However, if the check load instruction does not find a matching ALAT entry, then
the load operation is performed again to assure the correct result.

15.3 / PREDICATION, SPECULATION, AND SOFTWARE PIPELINING 553

We may also want to speculatively execute instructions that are data dependent
on a load instruction, together with the load itself. Starting with the same original
program, suppose we move up both the load and the subsequent add instruction:

1ld8.a r6 = [r8] ;; // Cycle -3 or earlier;
// advanced load
// other instructions

add r5 = ré6, r7 // Cycle -1; add that uses r6
// other instructions
st8 [r4] = ri2 // Cycle 0
chk.a r6, recover // Cycle 0; check
back: // return point from jump to
recover
st8 [rl8] = r5 // Cycle 0

Here we use a chk.a instruction rather than an 1d8.c instruction to validate the
advanced load. If the chk.a instruction determines that the load has failed, it cannot
simply reexecute the load; instead, it branches to a recovery routine to clean up:

Recover:
148 r6 = (r8] ;; // reload r6 from [r8]
add r5 = r6, r7 ;; // re-execute the add
br back // jump back to main code

This technique is effective only if the loads and stores involved have little chance
of overlapping.

Software Pipelining

Consider the following loop:

Ll: 1d4 r4 = [r5], 4 ;; // Cycle 0; load postinc 4
add r7 = r4, r9 ;; // Cycle 2
std [r6] = r7, 4 // Cycle 3; store postinc 4
br.cloop L1 ;; // Cycle 3

This loop adds a constant to one vector and stores the result in another vector
(e.g-yli] = x[i] + c).The Id4 instruction loads 4 bytes from memory. The qualifier ,4” at
the end of the instruction signals that this is the base update form of the load instruction:
the address in 15 is incremented by 4 after the load takes place. Similarly, the st4 instruc-
tion stores four bytes in memory and the address in 16 is incremented by four after the
store. The br.cloop instruction, known as a counted loop branch, uses the Loop Count
(LC) application register. If the LC register is greater than zero, it is decremented and the
branch is taken. The initial value in LC is the number of iterations of the loop.

Notice that in this program, there is virtually no opportunity for instruction-
level parallelism within a loop. Further, the instructions in iteration x are all executed
before iteration x + 1 begins. However, if there is no address conflict between the

554

CHAPTER 15 / THE 1A-64 ARCHITECTURE

load and store (r5 and r6 point to nonoverlapping memory locations), then utilization
could be improved by moving independent instructions from iteration x + 1 to iter-
ation x. Another way of saying this is that if we unroll the loop code by actually writ-
ing out a new set of instructions for each iteration, then there is opportunity to
increase parallelism. Let’s see what could be done with five iterations:

144
144
144
add
1d4
add
std
144
add
std
add
st4
add
st4
std

r32
r33
r34
r36
r35
r37
(ré6]
r36
r38
[ré]
r39
(ré]
r4o0
{ré]
[r6]

It

[r5], 4 ;; // Cycle 0
[r5], 4 ;; // Cycle 1
[r5], 4 // Cycle 2
r32, r9 ;; // Cycle 2
[r5], 4 // Cycle 3
r33, r9 // Cycle 3
ri36, 4 ;; // Cycle 3
[r5], 4 // Cycle 3
r34, r9 // Cycle 4
r37, 4 ;; // Cycle 4
r35, r9 // Cycle 5
r38, 4 ;; // Cycle 5
r36, r9 // Cycle 6
r3g, 4 ;; // Cycle 6
rd0, 4 ;; // Cycle 7

This program completes 5 iterations in 7 cycles, compared with 20 cycles in the
original looped program. This assumes that there are two memory ports so that a load
and a store can be executed in parallel. This is an example of software pipelining, anal-
ogous to hardware pipelining. Figure 15.6 illustrates the process. Parallelism is
achieved by grouping together instructions from different iterations. For this to work,
the temporary registers used inside the loop must be changed for each iteration to
avoid register conflicts. In this case, two temporary registers are used (r4 and 17 in the

Cycle 0

Time

Cycle 1

Cycle 2

1d4

1d4 Prolog

1d4

Cycle 3

Cycle 4

Cycle §

Cycle 6

Cycle 7

add 1d4

std | add 1d4

st4 | add

st4 | add Epilog

st4

Figure 15.6 Software Pipelining Example

15.3 / PREDICATION, SPECULATION, AND SOFTWARE PIPELINING 555

original program). In the expanded program, the register number of each register is
incremented for each iteration, and the register numbers are initialized sufficiently far
apart to avoid overlap.

Figure 15.6 shows that the software pipeline has three phases. During the prolog
phase, a new iteration is initiated with each clock cycle and the pipeline gradually fills
up. During the kernel phase, the pipeline is full, achieving maximum parallelism. For
our example, three instructions are performed in parallel during the kernel phase, but
the width of the pipeline is four. During the epilog phase, one iteration completes with
each clock cycle.

Software pipelining by loop unrolling places a burden on the compiler or pro-
grammer to assign register names properly. Further, for long loops with many iterations,
the unrolling results in a significant expansion in code size. For an indeterminate loop
(total iterations unknown at compile time), the task is further complicated by the need
to do a partial unroll and then to control the loop count. IA-64 provides hardware sup-
port to perform software pipelining with no code expansion and with minimal burden
on the compiler. The key features that support software pipelining are:

* Automatic register renaming: A fixed-sized area of the predicate and floating-
point register files (p16 to p63; fr32 to fr127) and a programmable-sized area of
the general register file (maximum range of 132 to r127) are capable of rotation.
This means that during each iteration of a software-pipeline loop, register refer-
ences within these ranges are automatically incremented. Thus, if a loop makes
use of general register r32 on the first iteration, it automatically makes use of r33
on the second iteration, and so on.

¢ Predication: Each instruction in the loop is predicated on a rotating predicate
register. The purpose of this is to determine whether the pipeline is in prolog,
kernel, or epilog phase, as explained subsequently.

* Special loop terminating instructions: These are branch instructions that cause
the registers to rotate and the loop count to decrement.

This is a relatively complex topic; here, we present an example that illustrates
some of the 1A-64 software pipelining capabilities. We take the original loop program
from this section and show how to program it for software pipelining, assuming a loop
count of 200 and that there are two memory ports:

mov lc = 199 // set loop count register
// to 199,
// which equals loop count - 1
// set epilog count register
// equal
// to number of epilog stages + 1
mov pr.rot = 1l<<16;;// prleé = 1; rest = 0
L1:(pl6)1d4 r32 = [r5], 4 // Cycle 0
(pl7) --- // Empty stage
(pl8) add r35 = r34, r9 // Cycle 0
(pl9) st4d [r6] = r36, 4 // Cycle 0
br.ctop L1 ;; // Cycle 0

"
1>

mov ecC

556 CHAPTER 15 / THE 1A-64 ARCHITECTURE

N
5

We summarize the key points related to this program:

. The loop body is partitioned into multiple stages, with zero or more instructions

per stage.

- Execution of the loop proceeds through three phases. During the prolog

phase, a new loop iteration is started each time around, adding one stage to
the pipeline. During the kernel phase, one loop iteration is started and
one completed each time around; the pipeline is full, with the maximum
number of stages active. During the epilog phase, no new iterations
are started and one iteration is completed each time around, draining the
software pipeline.

. A predicate is assigned to each stage to control the activation of the instruc-

tions in that stage. During the prolog phase, p16 is true and p17, p18, and p19
are false for the first iteration. For the second iteration, p16 and p17 are true;
during the third iteration p16, p17, and p18 are true. During the kernel phase,
all predicates are true. During the epilog phase, the predicates are turned to
false one by one, beginning with p16. The changes in predicate values are
achieved by predicate register rotation.

All general registers with register numbers greater than 31 are rotated with
each iteration. Registers are rotated toward larger register numbers in a
wraparound fashion. For example, the value in register x will be located in
register x + 1 after one rotation; this is achieved not by moving values but
by hardware renaming of registers. Thus, in our example, the value that the
load writes in r32 is read by the add two iterations (and two rotations) later
as r34. Similarly the value that the add writes in r35 is read by the store one
iteration later as r36.

For the br.ctop instruction, the branch is taken if either LC > 0 or EC > 1.
Execution of br.ctop has the following additional effects: If LC > 0, then LC is
decremented,; this happens during the prolog and kernel phases. If LC = 0 and
EC > 1, ECis decremented; this happens during the epilog phase. The instruc-
tion also control register rotation. If LC > 0, each execution of br.ctop places a
1 in p63. With rotation, p63 becomes pl6, feeding a continuous sequence of
ones into the predicate registers during the prolog and kernel phases. If
LC = 0, then br.ctop sets p63 to 0, feeding zeros into the predicate registers
during the epilog phase.

Table 15.4 shows a trace of the execution of this example.

15.4 IA-64 INSTRUCTION SET ARCHITECTURE

Figure 15.7 shows the set of registers available to application programs. That is, these
registers are visible to applications and may be read and, in most cases, written. The
register sets include the following:

General registers: 128 general-purpose 64-bit registers. Associated with
each register is a NaT bit used to track deferred speculative exceptions, as

